
Ball Screw Selection and Calculations

ME EN 7960 – Precision Machine Design Topic 4

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

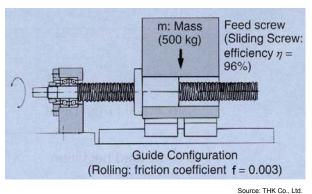
Based on Load

- A ball screw transforms rotational motion into translational motion. As a result, the shaft is subject to loads:
 - Thrust force (the sum of all external forces such as machining load, gravity, friction, inertial forces, etc.).
 - Torque required to generate the thrust force.

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-3

Driving Torque to Obtain Thrust


$$T = \frac{F_a l}{2\pi\eta}$$

T: driving torque [Nm]

 F_a : thrust force [N]

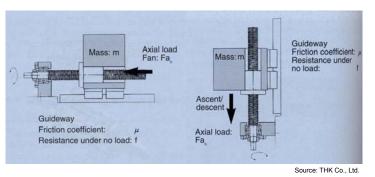
l: screw lead [m]

 η : efficiency

ME EN 7960 – Precision Machine Design – Ball Screw Calculations

Required Thrust

 The thrust is the sum of all forces acting in the axial direction.


$$F_{a} = F_{M} + F_{f} + F_{i} + F_{g}$$

$$F_{m}: \text{Machining force [N]}$$

$$F_{f}: \text{Frictional force [N]}$$

$$F_{g}: \text{Gravitational force [N]}$$

$$F_{g}: \text{Gravitational force [N]}$$

М

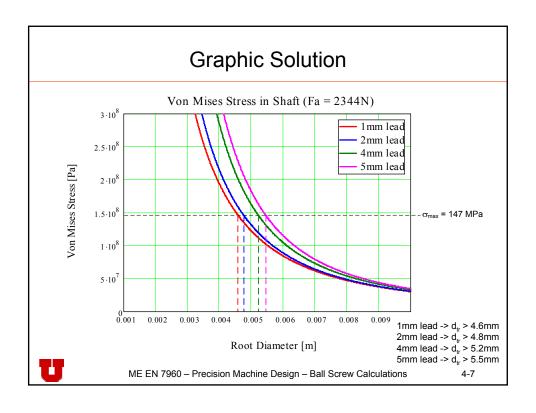
ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-5

Stresses from Applied Loads

$$\sigma_{axial} = \frac{F_a}{\pi r_{tr}^2} \qquad \tau_{torsional} = \frac{2T}{\pi r_{tr}^3}$$

The equivalent (Von Mises) stress:


$$\sigma_{eq} = \sqrt{\sigma_{axial}^2 + 3\tau_{torsional}^2}$$

$$\to \sigma_{eq} = \frac{4F_a}{\pi d_{ir}^2} \sqrt{1 + \frac{12l^2}{\pi^2 d_{ir}^2 \eta^2}}$$

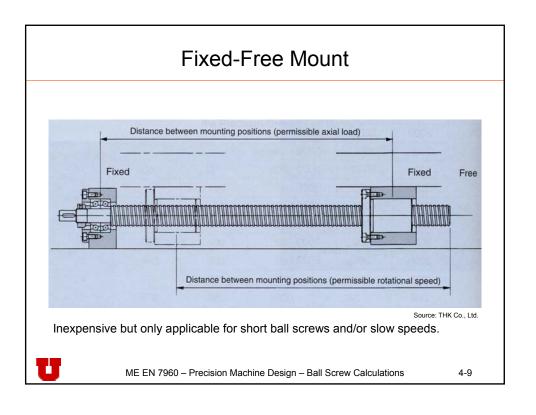
 σ_{max} : Permissible stress [147 MPa]

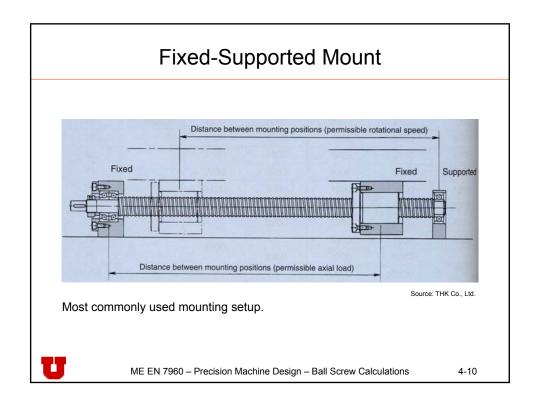
Ш

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

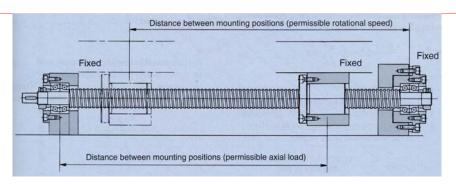
Permissible Compressive Load

· Buckling Load


$$P_{1} = \frac{\lambda \pi^{2} EI}{l_{b}^{2}}$$


$$P_{1}:$$
Buckling load [N]
Distance between mounting positions [m]
E:
Elastic modulus [Pa]
I:
Second moment of inertia [m⁴]
$$\lambda:$$
Support factor

Fixed – free: $\lambda = 0.25$ Fixed – supported: $\lambda = 2.0$ Fixed – fixed: $\lambda = 4.0$


U

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Fixed-Fixed Mount

Source: THK Co., Ltd.

Overconstrained mounting setup for applications where high stiffness, accuracy, and high shaft speed is required. Ball screw needs to be prestretched to avoid buckling in the case of thermal expansion.

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-11

Basic Static Load Rating C_{oa}

- When ball screws are subjected to excessive loads in static condition (non rotating shaft), local permanent deformations are caused between the track surface and the steel balls.
- When the amount of this permanent deformation exceeds a certain degree, smooth movement will be impaired.

$$C_{oa} \geq f_s F_a \qquad \begin{array}{c} C_{oa} : & \text{Basic static load rating [N, kgf, lbf]} \\ f_s : & \text{Static safety factor} \\ F_a : & \text{Load on shaft in axial direction [N, kgf, lbf]} \end{array}$$

Use conditions	$f_{\rm s}$ (lower limit)		
Normal operation	1.0 – 2.0		
Operation with impacts and vibrations	2.0 - 3.0		

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Permissible Speed

 When the speed of a ball screw increases, the ball screw will approach its natural frequency, causing a resonance and the operation will become impossible.

$$n_c = \frac{60\lambda^2}{2\pi l_b^2} \sqrt{\frac{EI}{\rho A}}$$
$$= \frac{15\lambda^2 d_{tr}}{2\pi l_b^2} \sqrt{\frac{E}{\rho}}$$

n_c: Critical speed [min⁻¹] l_b: Distance between supports [m]

E: Elastic modulus [Pa]

Second moment of inertia [m⁴]

ρ: Density [kg/m³]

A: Root cross sectional area [m²]

Support factor

Fixed – free: $\lambda = 1.875$ Supported – supported: $\lambda = 3.142$ Fixed – supported: $\lambda = 3.927$ Fixed – fixed: $\lambda = 4.730$

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-13

Spindle Speed and DN Value

· Shaft speed

$$n = \frac{v_a}{l}$$

n: Revolutions per second [s⁻¹]

 v_a : axial speed [m/s]

l: lead [m]

 DN Value. Unless specified otherwise:

$$DN \le 70000$$

D: Ball circle diameter [mm]

V: Revolutions per minute [min-1]

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Dynamic Load Rating C_a and Life

• The basic load rating C_a is the load in the shaft direction with 90% of a group of the same ball screws operating individually will reach a life of 10^6 (1 million) revolutions.

$$L = \left(\frac{C_a}{f_w F_a}\right)^3 \times 10^6 \qquad \begin{array}{c} L: & \text{Rotation life [rev]} \\ C_a: & \text{Basic dynamic load rating [N, kgf, lbf]} \\ f_w: & \text{Load factor} \\ F_a: & \text{Load in shaft direction [N, kgf, lbf]} \end{array}$$

Use conditions	$f_{ m w}$		
Smooth movement without impacts	1.0 – 1.2		
Normal movements	1.2 – 1.5		
Movement with impacts and vibrations	1.5 – 2.5		

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-15

Example

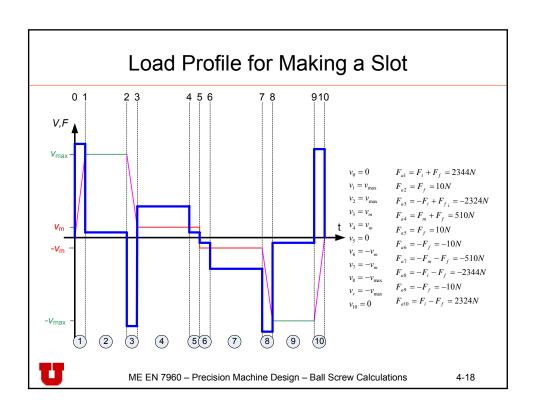
Mass of axis: 350kg

Maximum velocity: 20m/minAcceleration time: 0.05s

Bearing friction factor: 0.003

Machining force: 500N


• Length of work piece: 500mm


Length of travel at maximum speed: 100mm

· Orientation of axis: horizontal

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Running Lengths Depending on Usage

Running distance during acceleration: $l_{accl} = \frac{(v_1 + v_2)t_{accl}}{2}$

Running distance during deceleration: $l_{decl} = \frac{(v_1 + v_2)t_{decl}}{2}$

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-19

Mean Axial Force

Determine mean axial load in the positive direction by collecting all individual, positive axial loads.

$$F_{a,mean+} = \sqrt[3]{\frac{\displaystyle\sum_{i+} F_{ai+}^{\,3} l_{i+}}{\displaystyle\sum_{i} l_{i}}}$$

Determine mean axial load in the negative direction by collecting all individual, negative axial loads.

$$F_{a,mean-} = \sqrt[3]{ \frac{\sum_{i-} \left| F_{ai-}^3 \right| l_{i-}}{\sum_{i} l_i}}$$

Determine mean axial load: $F_{a,mean} = \frac{F_{a,mean+} + F_{a,mean-}}{2}$

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Load Profile Based on Utilization

$$\text{Mean axial force:} \qquad F_{a,mean} = \sqrt[3]{\frac{F_m^3 l_m + F_{uni}^3 l_{uni} + F_{accl}^3 l_{accl}}{l_b}}$$

Machining force
Force at constant velocity (not machining)
Maximum force during acceleration and deceleration
Total travel per cycle during machining
Total travel per cycle at constant velocity
Total travel per cycle during acceleration and deceleration

 $l_b = l_m + l_{uni} + l_{accl}$ Total travel length:

 $l_m = q_m l_b$ Travel length:

 $l_{\mathit{uni}} = q_{\mathit{uni}} l_{\mathit{b}}$

 $l_{accl} = q_{accl}l_b$

ME EN 7960 – Precision Machine Design – Ball Screw Calculations

4-21

Load Profile Based on Utilization (contd.)

Utilization: $q_m + q_{uni} + q_{accl} = 1$

Percentage per cycle spent machining (typically 0.5-0.9)

Percentage per cycle spent at constant velocity (typically 0.05-0.45)

Percentage per cycle spent during acceleration and deceleration (typically 0.05-0.1)

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

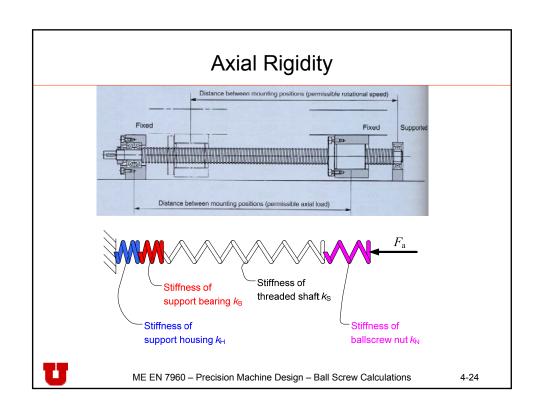
Dynamic Load Rating C_a and Life

 When the rotation life L has been obtained, the life time can be obtained according to the following formula if the stroke length and the operation frequency are constant:

$$L_{h} = \frac{L}{60n_{m}}$$

$$L: \text{Rotation life [rev]}$$

$$L_{h}: \text{Life time [hr]}$$


$$mean rotational speed [min-1]$$

$$n_m = \frac{\sum_{i} (n_i l_i)}{\sum_{i} l_i}$$

 n_i : rotational speed at phase i [min⁻¹] l_i : distance traveled at phase i [m]

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Axial Rigidity

Fixed-free Fixed-supported

$$\frac{1}{k} = \frac{1}{k_s} + \frac{1}{k_N} + \frac{1}{k_B} + \frac{1}{k_H}$$

Fixed-fixed

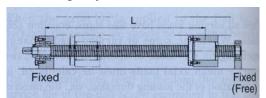
$$\frac{1}{k} = \frac{1}{k_s} + \frac{1}{k_N} + \frac{1}{k_{B1} + k_{B2}} + \frac{1}{k_{H1} + k_{H2}}$$

k: Axial rigidity of linear motion system [N/m]

 k_s : Axial rigidity of screw shaft [N/m]

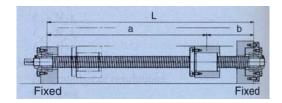
 $k_{\rm N}$: Axial rigidity of nut [N/m]

 $k_{\rm B}$: Axial rigidity of support bearing [N/m] $k_{\rm H}$: Axial rigidity of support housing [N/m]


U

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-25


Ball Screw Selection Procedure

· Axial rigidity of shaft

Fixed-free and fixed-supported:

$$k_s = \frac{AE}{L}$$

Fixed-fixed:

$$k_s = \frac{AEL}{ab}$$

$$k_{s,\min} = \frac{4AE}{L}$$

Ш

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

Ball Screw Accuracy

· Applicable if used in combination with rotary encoders.

Table 1 Accumulated reference lead error and variation (tolerance)

Unit: um

	Ground products						Rolled products		
Accuracy grade		C3		C5		C7	C8	C10	
Thread part	length (mm)	Accumulated	Madatas	Accumulated	Variation	Accumulated	Accumulated	Accumulated	
Over	Up to	lead error	reference lead error	Variation	reference lead error	variation	reference lead error	reference lead error	reference lead error
-	315	12	8	23	18		±0.1mm/ 300mm (No other specifications)	±0.21mm/ 300mm (No other specifications)	
315	400	13	10	25	20	±0.05mm/ 300mm			
400	500	15	10	27	20				
500	630	16	12	30	23				
630	800	18	13	35	25				
800	1000	21	15	40	27				
1000	1250	24	16	46	30	(No other specifications			
1250	1600	29	18	54	35				
1600	2000	35	21	65	40				
2000	2500	41	24	77	46		Source:	: THK Co., Ltd.	
2500	3150	50	29	93	54				
3150	4000	-	-	115	65				
4000	5000	-	-	140	77				

ME EN 7960 - Precision Machine Design - Ball Screw Calculations

4-27

Overall Error

- The overall error is the summation of a number of individual errors:
 - Non-uniformity of threaded shaft.
 - Resolution/accuracy of rotary encoder.
 - Axial compliance of ball screw assembly.
 - Torsional compliance of threaded shaft.

$$\delta_{a} = \delta_{S} + \frac{l}{N_{rot}} + \frac{F_{a}}{k_{axial}} + \frac{32Tl_{b}}{\pi d_{tr}^{4}G} \cdot \frac{l}{2\pi}$$

overall linear stiffness [N/m] overall linear error [m] ball screw non-linearity [m] applied torque [Nm]

 k_{axial} : T: l_{b} : d_{tr} : lead [m] ball screw length [m] resolution of rotary encoder root diameter of shaft [m]

[pulses/rev] shear modulus [Pa]

thrust force onto system [N]

ME EN 7960 - Precision Machine Design - Ball Screw Calculations