Gases

You can do everything with the Perfect Gas Law (The Equation of State)...
$\mathrm{pV}=\mathrm{mR} T$
Where
$\mathbf{p}=$ pressure (Pa) absolute!
$\mathbf{V}=$ volume (m^{3})
$\mathrm{m}=$ mass of gas (kg)
$\mathbf{R}=8.314472 / \mathrm{M}(\mathrm{J} / \mathrm{kgK})$ where $\mathrm{M}=$ relative molecular mass (no units)
$\mathbf{T}=$ temperature (K) Kelvin!

Example:

Find R for CO_{2} (molecule)
$\mathrm{M}=12+2^{*} 16=44 \mathrm{~g} / \mathrm{mole}$
A mole is a big number (Avagadro's number $=6.0221413 \times 10^{23}$)
$\mathrm{R}=8.314472 / \mathrm{M}$
$=8.314472 / 44$
$=0.188965 \mathrm{~J} / \mathrm{kgK}$
Look on chart for $\mathrm{CO}_{2}: \mathrm{R}=0.189$

The General Gas Equation

$$
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}
$$

This is a quicker way when dealing with 2 states using the same amount of gas. (m and R stay the same).

This comes directly from the Equation of State...
$p_{1} V_{1} / m R T_{1}=p_{2} V_{2} / m R T_{2}$
$p_{1} V_{1} / T_{1}=p_{2} V_{2} / T_{2}$

Should we use $p V=m R T$ or $p_{1} V_{1} / T_{1}=p_{2} V_{2} / T_{2}$???
When to use the Equation of State...
$\mathrm{pV}=\mathrm{mRT}$:

- Anything about mass \mathbf{m} or gass type \mathbf{R}
- Only 1 state

When to use the General Gas Equation...
$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$

- There are 2 states
- Not given mass m or gas type R

1st law of thermo + gases

Thursday, 10 November 2011
11:29 AM

Process	Relationship between p, V, T	Work (W)	Internal-energy change $\left(U_{2}-U_{1}\right)$	Heat (Q)
constant pressure	$p=$ constant $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	$p\left(V_{2}-V_{1}\right)$	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{\rho}\left(T_{2}-T_{1}\right)$

Constant Pressure...

$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
$\Delta \mathrm{U}=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ (true for everything... Isothermal, Isobaric etc...)
$\mathrm{W}=\mathrm{p} \Delta \mathrm{V}$
$\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)+\mathrm{p} \Delta \mathrm{V}$
$=m c_{p}\left(T_{2}-T_{1}\right) \quad$ (so c_{p} takes work into account).

Gas	Formula	c_{p} Constant Pressure Specific Heat Capacity $(\mathbf{k J} / \mathrm{kgK})$ at $20^{\circ} \mathrm{C}$	c_{v} Constant Volume Specific Heat Capacity (kJ/kgK) at $20^{\circ} \mathrm{C}$	γ Ratio of Specific Heats $\gamma=c_{p} / \mathbf{c}_{v}$	R Characteristic Gas Constant ($\mathrm{kJ} / \mathrm{kgK}$) $\mathbf{R}=\mathbf{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}$
Acetone		1.47	1.32	1.11	0.15
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	1.69	1.37	1.232	0.319
Air		1.005	0.718	1.40	0.287
Ammonia	NH_{3}	2.19	1.66	1.31	0.53
Argon	Ar	0.520	0.312	1.667	0.208
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	1.09	0.99	1.12	0.1

That is why c_{p} is larger than c_{v}

Example: Gas Eqn

Tuesday, 1 November 2011
6:37 PM

Q1: A certain amount of gas fills $4.9 \mathrm{~m}^{3}$ at $128^{\circ} \mathrm{C}$ and 28 kPa (gauge). What will be its volume at standard temp $\left(20^{\circ} \mathrm{C}\right)$ and pressure $(101.3 \mathrm{kPa})$?

Conversions;

$$
\mathrm{T}_{2}=20+273=293 \mathrm{~K}
$$

$$
\mathrm{p}_{1}=28000+101300=129300 \mathrm{~Pa}
$$

$$
\mathrm{T}_{1}=128+273=401 \mathrm{~K}
$$

$$
\mathrm{p}_{2}=101300 \mathrm{~Pa}
$$

$$
\mathrm{p}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}
$$

$$
\mathrm{V}_{2}=\mathrm{T}_{2} \mathrm{p}_{1} \mathrm{~V}_{1} /\left(\mathrm{T}_{1} \mathrm{p}_{2}\right)
$$

$$
=293 * 129300 * 4.9 /(401 * 101300)=4.5699 \mathrm{~m} 3
$$

Q2: Compressed air ($\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$) fills a tank of diam 398 $\mathrm{mm} x$ length 2.5 m . Pressure is 1.22 MPa (gauge), temperature is $25^{\circ} \mathrm{C}$. Calculate air mass.

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{J} \\
\mathrm{p} V=\stackrel{?}{\mathrm{~m}} \mathrm{R} T \\
\mathrm{~m}=\mathrm{pV} / \mathrm{RT}
\end{array} & \begin{array}{l}
\mathrm{m}=\text { mass of gas }(\mathrm{kg}) \\
\mathrm{R}=8.314472 / \mathrm{M}(\mathrm{~J} / \mathrm{kgK}) \\
\mathrm{T}=\text { temperature }(\mathrm{K}) \text { Kelvin! }
\end{array} \\
\text { Convert: } & \mathrm{V}=\mathrm{Pi}^{*}(0.5 * 0.398)^{\wedge} 2 * 2.5=0.311026 \mathrm{~m} 3 \\
\mathrm{p}=1.22 \mathrm{E} 6+101.3 \mathrm{E} 3=1321300 \mathrm{~Pa} & \\
\mathrm{~T}=273+25=298 \mathrm{~K} \\
\mathrm{R}=0.287 * 1000=287 \mathrm{~J} / \mathrm{kgK} \text { (If you looked up air in the table) } \\
\mathrm{m}=\mathrm{pV} / \mathrm{RT} & \\
=1321300^{*} 0.311026 /(287 * 298)=4.805073 \mathrm{~kg}
\end{array}
$$

The 7 part question!

Tuesday, 1 November 2011
7:07 PM
Q7: Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878 mm .
Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$. Find mass of air.

Where

$$
\begin{aligned}
& \mathrm{pV}=\mathrm{mRT} \\
& \mathrm{~m}=\mathrm{pV} \mathrm{RT}
\end{aligned}
$$

Convert:

Area $=\mathrm{Pi}^{*}\left(0.5^{*} 0.610\right)^{\wedge} 2=0.292247 \mathrm{~m}^{2}$
$\mathrm{V}=0.292247 * 0.878=0.256593 \mathrm{~m}^{3}$
$\mathrm{p}=\mathrm{F} / \mathrm{A}=\left(17.9^{*} 9.81\right) /(0.292247)=600.858178 \mathrm{~Pa}($ Gauge $!!!)$ $=600.858178+101.3 \mathrm{E} 3=101900.86 \mathrm{~Pa}($ Absolute $)$
$\mathrm{T}=273+16=289 \mathrm{~K}$
$\mathrm{R}=0.287 * 1000=287 \mathrm{~J} / \mathrm{kgK}$
$\mathrm{m}=\mathrm{pV} / \mathrm{RT}$
$=101900.86 * 0.256593 /(287 * 289)=0.315241 \mathrm{~kg}$

Q8: (cont) Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878
mm . Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$.
Expansion $=355 \mathrm{~mm}$. Determine final temperature $\left({ }^{\circ} \mathrm{C}\right)$.
Method 1: Using pV = mRT
Some properties same as previous question;

$\mathrm{p}=101900.86 \mathrm{~Pa}$ (Absolute)
$\mathrm{m}=0.315241 \mathrm{~kg}$
$\mathrm{V}_{2}=(878+355) / 878 \mathrm{~V}_{1}=(878+355) / 878 \mathrm{~V}_{1}$
$=1.4043 * \mathrm{~V} 1=1.4043 * 0.256593=0.360334 \mathrm{~m}^{3}$
From pV $=\mathrm{mRT}$...
$\mathrm{T}=\mathrm{pV} / \mathrm{mR}$
$=101900.86 * 0.360334 /(0.315241 * 287)$
$=405.84341 \mathrm{~K}$
$=405.84341-273=132.84{ }^{\circ} \mathrm{C}$

Method 2: Using
$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$
Some properties same as previous question;
$\mathrm{p}=101900.86 \mathrm{~Pa}$ (Absolute)
$\mathrm{m}=0.315241 \mathrm{~kg}$
$\mathrm{V}_{2}=(878+355) / 878 \mathrm{~V}_{1}=(878+355) / 878 \mathrm{~V}_{1}$
$=1.4043 * \mathrm{~V} 1=1.4043 * 0.256593=0.360334 \mathrm{~m}^{3}$
$\mathrm{p}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$
$\mathrm{T}_{2} / \mathrm{p}_{2} \mathrm{~V}_{2}=\mathrm{T}_{1} / \mathrm{p}_{1} \mathrm{~V}_{1}$
$\mathrm{T}_{2}=\mathrm{T}_{1} \mathrm{p}_{2} \mathrm{~V}_{2} / \mathrm{p}_{1} \mathrm{~V}_{1} \quad$ (pressures are the same...)
$=\mathrm{T} 1 * 1.4043$
$=289^{*} 1.4043=405.8427 \mathrm{~K}$
$=405.8427-273=132.8427{ }^{\circ} \mathrm{C}$
S Same!

Q9: (cont) Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878
mm . Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$.
Expansion $=355 \mathrm{~mm}$. Determine heat flow. (+in, -out)
We need Q
From 1st law of Thermo:
$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
But when the substance is constant mass and state
Non-flow, No phase change, Constant c; $\quad \mathbf{U}_{2}-\mathrm{U}_{1}=\mathbf{m c} \Delta \mathbf{t}$
Where
$\mathbf{U}=$ internal energy (J)
m = mass (kg)
$\mathrm{c}=$ specific heat capacity $(\mathrm{J} / \mathrm{kgK})$
So... $\Delta \mathrm{U}=\mathrm{mc} \Delta \mathrm{T}$
$\mathrm{mc} \Delta \mathrm{T}=\mathrm{Q}-\mathrm{W}$
So in order to find the heat Q , we must calculate the work $\mathrm{W}=\mathrm{p} \Delta \mathrm{V}$ OR...
Ignore the work and use c_{p} Constant Pressure Specific Heat Capacity

Gas \begin{tabular}{c|c|c|}

\hlinec_{p} \& | c_{v} |
| :---: |
| Constant |
| Pressure | \& | Constant |
| :---: |
| Volume |

Formula \begin{tabular}{c}
Specific Heat

Capacity

(kJ/kgK)

 \&

Specific Heat

Capacity

(kJ/kgK)
\end{tabular}

\hline
\end{tabular}

Gas	Formula	c_{p} Constant Pressure Specific Heat Capacity (kJ/kgK) at $20^{\circ} \mathrm{C}$	$\mathbf{c}_{\mathbf{r}}$ Constant Volume Specific Heat Capacity (kJ/kgK) at $20^{\circ} \mathrm{C}$
Acetone		1.47	1.32
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$, तa	1.69	1.37
Air		1.005	0.718

(This saves a lot of time for standard engineering problems).

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{mc}_{\mathrm{p}} \Delta \mathrm{~T} \\
& =0.315241 * 1005 *(132.8427-16)=37017.78 \mathrm{~J}
\end{aligned}
$$

(This is the amount of heat that was put into the gas in order to make it expand)

Q10: (cont) Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878 mm . Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$.
Expansion $=355 \mathrm{~mm}$. Find internal energy change.
$\mathrm{mc} \Delta \mathrm{T}=\mathrm{Q}-\mathrm{W}$
Check if this works....
LHS $=\mathrm{mc}_{\mathrm{v}} \Delta \mathrm{T}$
$=0.315241 * 718 *$
(132.8427-16)
$=26446.53 \mathrm{~J}$

Constant Volume Heating (No volume change = no work)
$\Delta \mathrm{U}=\mathrm{Q}$

Constant Pressure Heating (Volume changes = work)
$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$

RHS $=\mathrm{Q}-\mathrm{W}$
$\mathrm{Q}=37017.78 \mathrm{~J}$
$\mathrm{W}=\mathrm{p} \Delta \mathrm{V} \quad$ This is the work AGAINST the atmosphere...
$=101300 *(0.360334-0.256593)$
$=10508.9633 \mathrm{~J}$
PLUS... We lifted up the piston...
$\mathrm{W}=\mathrm{Fd}=17.9^{*} 9.81 * 0.355=62.3376 \mathrm{~J}$
W tot $=10508.9633+62.3376=10571.3 \mathrm{~J}$
$\mathrm{Q}-\mathrm{W}=37017.78-10571.3=26446.48 \mathrm{~J}$

Q11: (cont) Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878 mm . Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$. Expansion $=355 \mathrm{~mm}$. Find work of the system. (-in, +out)

Easy... (Did this already when we checked the previous question) $\mathrm{W}=\mathrm{p} \Delta \mathrm{V} \quad$ This is the work AGAINST the atmosphere...
$=101300 *(0.360334-0.256593)$
$=10508.9633 \mathrm{~J}$ (against atmosphere only)
PLUS... We lifted up the piston...
$\mathrm{W}=\mathrm{Fd}=17.9 * 9.81 * 0.355=62.3376 \mathrm{~J}$
W tot $=10508.9633+62.3376=10571.3 \mathrm{~J}$
OR...From 1st Law...
$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
$\mathrm{W}=\mathrm{Q}-\Delta \mathrm{U}$
$=\mathrm{Q}-\mathrm{mc}_{\mathrm{v}} \Delta \mathrm{T}$
$=37017.78-26446.53$
$=10571.25 \mathrm{~J}$

Q12: (cont) Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878 mm . Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$. Expansion $=355 \mathrm{~mm}$. Find work of piston. (-in, +out)

> Easy - did this before...

PLUS... We lifted up the piston...
$\mathrm{W}=\mathrm{Fd}=17.9^{*} 9.81^{*} 0.355=62.3376 \mathrm{~J}$

Q13: (cont) Initial temperature $=16^{\circ} \mathrm{C}$, initial height 878 mm . Cylinder diameter $=610 \mathrm{~mm}$. Piston mass $=17.9 \mathrm{~kg}$.
Expansion $=355 \mathrm{~mm}$. Find work of atmosphere. (-in, +out)

Easy... repeat from above....
$\mathrm{W}=\mathrm{p} \Delta \mathrm{V} \quad$ This is the work AGAINST the atmosphere...
$=101300 *(0.360334-0.256593)$
$=10508.9633 \mathrm{~J}$ (against atmosphere only)

The internal energy INCREASES if heat goes in, and if work goes IN.
In our case, heat goes IN and work goes OUT, but more heat than work, so internal energy INCREASED.

Polytropical!

Tuesday, 8 November 2011 6:45 PM
Well Adiabatic actually.

Q20: Air at 28 kPa and $24^{\circ} \mathrm{C}$ fills an insulated cylinder of 3.74 litres. It is compressed down to 0.53 litres. (a) What is the final temperature? $\left({ }^{\circ} \mathrm{C}\right)$

Compress Expand

This does not work!!!! (No heat flow = ADIABATIC)
The pressure and volume affect each other by the equation:
$\mathrm{pV}^{\mathrm{n}}=$ constant
Go back to the table...

Adiabatic is a type of Polytropic, where $\mathrm{n}=\gamma(n=$ polytropic index $=1.4=A I R$)

Q20: Air at 28 kPa and $24^{\circ} \mathrm{C}$ fills an insulated cylinder of 3.74 litres. It is compressed down to 0.53 litres. (a) What is the final temperature? $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{T} 2=\mathrm{T} 1 *(\mathrm{~V} 1 / \mathrm{V} 2)^{\wedge}(\mathrm{n}-1)$
Convert:
$\mathrm{T} 1=273.15+24=297.15 \mathrm{~K}$
$\mathrm{V} 1=3.74 / 1000=0.00374 \mathrm{~m} 3$
$\mathrm{V} 2=0.53 / 1000=0.00053 \mathrm{~m} 3$
$\mathrm{T} 2=297.15^{*}(0.00374 / 0.00053)^{\wedge}(1.4-1)$
$=649.25309 \mathrm{~K}$
$=649.25309-273.15=376.10309{ }^{\circ} \mathrm{C}$
Q21: (cont) Air at 28 kPa and $24^{\circ} \mathrm{C}$ fills an insulated cylinder of 3.74 litres. It is compressed down to 0.53 litres.
(b) Determine the final pressure.
$\mathrm{p} 2=\mathrm{p} 1^{*}(\mathrm{~T} 2 / \mathrm{T} 1)^{\wedge}(\mathrm{n} /(\mathrm{n}-1))$
Convert: $\mathrm{P} 1=28000+101300=129300 \mathrm{~Pa}$
$=129300 *(649.25309 / 297.15)^{\wedge}(1.4 /(1.4-1))$
$=1.99357 \mathrm{MPa}$

Q22: (cont) Air at 28 kPa and $24^{\circ} \mathrm{C}$ fills an insulated
cylinder of 3.74 litres. It is compressed down to 0.53 litres.
(c) How much work was done BY the gas?
(Hint: Watch \pm signs)

$$
\begin{aligned}
\mathrm{W} & =\left(\mathrm{p}_{1} \mathrm{~V}_{1}-\mathrm{p}_{2} \mathrm{~V}_{2}\right) /(\mathrm{n}-1) \\
& =(129300 * 0.00374-1.99357 \mathrm{E} 6 * 0.00053) /(1.4-1) \\
& =-1432.52525 \mathrm{~J}
\end{aligned}
$$

So the work is NEGATIVE?????? YES!!!!!!!!!
Work done BY the gas is backwards (negative)...

CHECK...

Find change of internal energy for gas;
$\mathrm{U} 2-\mathrm{U} 1=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Find m :
$p V=m R T$
Where
$\mathbf{p}=$ pressure (Pa) absolute!
$\mathbf{V}=$ volume (m^{3})
$\mathbf{m}=$ mass of gas (kg)
$\mathbf{R}=8.314472 / \mathrm{M}(\mathrm{J} / \mathrm{kgK})$ where $\mathrm{M}=$ relative molecular mass (no units)
$\mathbf{T}=$ temperature (K) Kelvin!
Find mass at state 1:
$\mathrm{m}=\mathrm{pV} / \mathrm{RT}=(129300 * 0.00374) /(287 * 297.15)=0.00567 \mathrm{~kg}$
Back to 1st law of thermo:
$\mathrm{U}_{2}-\mathrm{U}_{1}=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\begin{aligned}
&= 0.00567 * \\
&=1433.43 \mathrm{~J}
\end{aligned}
$$

Adiabatio = insulated $=$ no heat flow:
$\mathrm{U}_{2}-\mathrm{U}_{1}=\mathrm{Q}-\mathrm{W}$

