Fluid Power (Ch 12 p254)

Tuesday, 30 August 2011
6:53 PM

Continuity:

$\dot{\mathrm{V}}=v \mathrm{~A}$

Power:

$\mathrm{P}=\dot{\mathrm{m}} g \mathrm{H}$
(Pressure dominant system. e.g. Hydraulics)

$$
\mathrm{P}=\mathrm{p} \dot{\mathrm{~V}}
$$

Full Bernoulli:

Bernoulli Equation: $\mathrm{H}_{1}+\mathrm{H}_{\text {pump }}=\mathrm{H}_{2}+\mathrm{H}_{\text {loses }}$
$\frac{P_{1}}{\rho \mathrm{~g}}+\frac{v_{1}{ }^{2}}{2 \mathrm{~g}}+h_{1}+H=\frac{P_{2}}{\rho \mathrm{~g}}+\frac{v_{2}{ }^{2}}{2 \mathrm{~g}}+h_{2}+H_{\mathrm{L}}$

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{v_{1}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{1} \pm \mathrm{H}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{v_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{2}+\mathrm{H}_{\mathrm{L}}
$$

$$
\mathrm{P}=\dot{\mathrm{m}} \mathrm{gH}
$$

$$
\begin{aligned}
& \mathrm{P}=\text { power }(\mathrm{W}) \\
& \stackrel{\mathrm{m}}{\mathrm{~m}}=\text { mass flow rate }(\mathrm{kg} / \mathrm{s}) \\
& \mathrm{H}=\text { total Head change }\left(\mathrm{H}=\mathrm{H}_{2}-\mathrm{H}_{1}\right)
\end{aligned}
$$

Simplifications;

Inlet diam = outlet diam (Velocity head unchanged) Inlet height = outlet height (Potential head unchanged) Pressure usually changes!

Hydraulics. Pressure is very high, flowrates not very significant, potential heights negligible.
Watch this...
Hydraulics 20Mpa
$h_{p}=\mathrm{p} / \rho \mathrm{g}$

About 2.5 km high!!
So, this equation
$\mathrm{P}=\dot{\mathrm{m}} \mathrm{gH}$
becomes $\mathrm{P}=\dot{\mathrm{m}} \mathrm{gh}_{\mathrm{p}}=\dot{\mathrm{m}} \mathrm{gp} / \rho \mathrm{g}=\dot{\mathrm{m}} \mathrm{p} / \rho=\mathrm{p} \dot{\mathrm{V}}$
$\mathrm{P}=\mathrm{p} \dot{\mathrm{V}}$

So, to use POWER in Bernoulli equation, you need to convert to HEAD...
$\mathrm{H}=\frac{\mathrm{P}}{\dot{\mathrm{m} g}}$

Efficiency
Tuesday, 13 September 2011
6:23 PM

$\eta=\frac{P_{f}}{P}$
POWER $=p V$

Example Pump

Example: Hydraulic Pump
Hydraulics: (Pressure dominant)
$\mathrm{P}=\mathrm{p} \dot{\mathrm{V}}$
Convert from Absolute pressure...
$\mathrm{p}=6500-101.3=6398.7 \mathrm{kPa}$
$\dot{\mathrm{V}}=v \mathrm{~A}$
$=2.5 * \mathrm{Pi}^{*} 0.008^{\wedge} 2 / 4$
$=0.00012566 \mathrm{m3} / \mathrm{s}$
$\mathrm{P}=\mathrm{p} \dot{\mathrm{V}}$
$=6398.7 * 1000 * 0.00012566$
$=804.060642 \mathrm{~W}$

Watch this...
Hydraulics 20Mpa
$\mathrm{h}_{\mathrm{p}}=\mathrm{p} / \rho \mathrm{g}$
$=20 \mathrm{e} 6 /(820 * 9.81)$
$=2,486 \mathrm{~m}$
About 2.5 km high!!

$$
\mathrm{P}=\dot{\mathrm{m}} \mathrm{gH}
$$

Oil density $=820 \mathrm{~kg} / \mathrm{m} 3$

$$
\begin{aligned}
\mathrm{m} & =\mathrm{V} \rho=0.00012566 * 820= \\
& =0.1030412 \mathrm{~kg} / \mathrm{s} \\
\mathrm{H} & =\mathrm{hp}+\mathrm{b} \times+\not \subset \\
& =\mathrm{p} / \rho \mathrm{g} \\
& =6398700 /(820 * 9.81) \\
& =795.4427 \mathrm{~m} \\
\mathrm{P} & =\dot{\mathrm{m}} \mathrm{gH} \\
& =0.1030412 * 9.81 * 795.4427 \\
& =804 \mathrm{~W}
\end{aligned}
$$

Examples continued

Tuesday, 13 September 2011
7:10 PM

Q1: This 9.3 kW pump handles $46 \mathrm{~L} / \mathrm{s}$. (a) Find the increase in head.

$$
\begin{aligned}
\mathrm{P} & =\dot{\mathrm{m} g} \underline{\mathrm{H}} \\
\mathrm{H} & =\mathrm{P} / \mathrm{mg}=9300 /(46 * 9.81)=20.609 \mathrm{~m}
\end{aligned}
$$

Q2: (cont) This 9.3 kW pump handles $46 \mathrm{~L} / \mathrm{s}$. The inlet pressure is -11 kPa . (b) What is outlet pressure?

All in pressure head...
$\mathrm{H} 2=\mathrm{H} 1+\mathrm{hp}=-11000 /(1000 * 9.81)+20.609$

$$
=-1.1213+20.609=\underline{19.4877 \mathrm{~m}}
$$

Outlet pressure: $\mathrm{hp}=\mathrm{p} / \mathrm{\rho g}$ so $\mathrm{p}=\mathrm{hp} * \rho \mathrm{~g}=19.4877 * 1000 * 9.81=191174.337$

P_{f}

Q3: (cont) This 9.3 kW pump handles $46 \mathrm{~L} / \mathrm{s}$. The inlet pressure is -11 kPa . Motor power is 17 kW (c) What is the efficiency (percentage)?

$$
\eta=9.3 / 17=0.5471
$$

Example of efficiency and power equations for conversion from electrical to shaft to fluid power.

Shaft power

Example 12.5 (p260)

Tuesday, 13 September 2011

Find the power of the turbine when head loss $=0.6 \mathrm{~m}$ and exit velocity $=3.5 \mathrm{~m} / \mathrm{s}$.

Bernoulli \& Power $\quad H_{1}=H_{2}$

$$
\begin{aligned}
& \frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+h_{1} \pm H=\frac{p_{2}}{\rho g}+\frac{r_{2}^{2}}{2 g}+h_{2}+H_{2} \\
& h_{p}+H=\text { PUMP } \\
& h_{v} \\
& \text { LOSS }
\end{aligned}
$$

Prob in 5260 $H_{1}=H_{2}$
Total Head stays the same unless friction or pump/turbine

$$
\text { (Hi) FIND } H_{2}
$$

$$
\begin{aligned}
\frac{\mathrm{p}_{1}}{\hat{\rho} \mathrm{~g}}+\frac{v_{2}}{2 \mathrm{~g}}+\mathrm{h}_{1}+\underset{\sim}{\mathrm{H}} & =\frac{\mathrm{p} / 2}{\rho \mathrm{~g}}+\frac{\sqrt[v]{2}}{2 \mathrm{~g}}+\mathrm{K}_{\mathrm{s}}+\underset{\mathrm{L}}{\mathrm{H}_{\mathrm{L}}} \\
\mathrm{P} & =\dot{\mathrm{mg}}
\end{aligned}
$$

Find the Power produced for every $1 \mathrm{~m}^{3}$ of water per second.
$\mathrm{h}_{1}=8.4+0.9=9.3 \mathrm{~m}$
$\mathrm{H}_{\mathrm{t}}=$ turbine head ?
$\mathrm{h}_{\mathrm{V} 2}=3.5^{\wedge} 2 /(2 * 9.81)=0.6244 \mathrm{~m}$
$\mathrm{H}_{\mathrm{t}}=0.6244-9.3+0.6=-8.0756 \mathrm{~m}$
Find the power per m^{3} of water...
Take $1 \mathrm{~m}^{3}$ per second...

$$
\begin{aligned}
\mathrm{P} & =\dot{\mathrm{mgH}} \\
& =1000 * 9.81^{*}-8.0756 \\
& =-79221.636 \mathrm{~W} \\
& =-79.2216 \mathrm{~kW} \text { (fluid power taken by the turbine) }
\end{aligned}
$$

Output power $($ efficiency $=92 \%)$

$$
\eta=\frac{p}{P f}
$$

P out $=79.2216 * 0.92=72.8839 \mathrm{~kW}$ (shaft power)
... Keep going...
This is shaft power, which is...
$\mathrm{P}=\mathrm{T} \omega$
Generator at 95\%,
Electric power $=72.8839 * 0.95=69.2397 \mathrm{~kW}$ (electrical power) $\mathrm{P}=\mathrm{VI}$

Examples continued

Tuesday, 13 September 2011
7:32 PM

Continuity:

$\stackrel{\bullet}{\mathrm{V}}=v \mathrm{~A}$
$\dot{\mathrm{m}}=\rho \mathrm{gh}$

Power:

$\mathrm{P}=\dot{\mathrm{m}} \mathrm{gH}$

(Pressure dominant system. e.g. Hydraulics)

$$
\mathrm{P}=\mathrm{p} \dot{\mathrm{~V}}
$$

Full Bernoulli:

Q7: A water-jet cutter produces a jet of 0.4 mm diameter at a speed of $930 \mathrm{~m} / \mathrm{s}$. (oriface diam is much smaller than water inlet tube) (a) What pressure is needed?
$\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{\psi^{2}}{2 \mathrm{~g}}+\mathscr{K}_{1}+\mathrm{K}_{2}=\frac{\mathrm{p}_{z}}{\rho \mathrm{~g}}+\frac{v_{2}^{2}}{2 \mathrm{~g}}+\mathrm{K}_{2}+\mathrm{K}_{\mathrm{E}}$

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{v_{1}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{1} \pm \mathrm{H}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{v_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{2}+\mathrm{H}_{\mathrm{L}}
$$

$$
\mathrm{h}_{\mathrm{v} 2}=930^{\wedge} 2 /\left(2^{*} 9.81\right)=44,083 \mathrm{~m}
$$

$$
\mathrm{p} 1=44083 *(1000 * 9.81)=432454230 \mathrm{~Pa}=432.454230 \mathrm{MPa}
$$

Q8: (cont) A water-jet cutter produces a jet of 0.4 mm diameter at a speed of $930 \mathrm{~m} / \mathrm{s}$. (oriface diam is much smaller than water inlet tube) (b) What is the volume flowrate?

$$
\begin{aligned}
& \dot{\mathrm{V}}=v \mathrm{~A} \\
& \mathrm{~V}=930^{*} \mathrm{Pi}^{*}(0.4 / 1000)^{\wedge} 2 / 4=0.0001168673 \mathrm{~m}^{3} / \mathrm{s} \\
&=0.1168673 \mathrm{~L} / \mathrm{s}
\end{aligned}
$$

Q9: (cont) A water-jet cutter produces a jet of 0.4 mm diameter at a speed of $930 \mathrm{~m} / \mathrm{s}$. (oriface diam is much smaller than water inlet tube) (c) What power is required?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{p} \dot{\mathrm{~V}} \\
& \mathrm{P}=432454230 * 0.0001168673=50540 \mathrm{~W}
\end{aligned}
$$

Q11: A pump transfers water at $41 \mathrm{~L} / \mathrm{s}$ from 120 m to 132 m elevation. Head loss is 2.3 m . Pump effiiciency is 66%. (a) What fluid power is required?

There is no pipe diameter given.
This means we cannot calculate the velocity.
So we must assume a large pipe diameter - hence a negligable velocity head.
$\mathrm{h} 2=132-120=12 \mathrm{~m}$
The pump is doing ALL the work, so the fluid must be starting from ZERO pressure...
$\mathrm{H}=12+2.3=14.3 \mathrm{~m}$
$\mathrm{P}=\dot{\mathrm{m}} \mathrm{gH}$
$=41 * 9.81 * 14.3=5751.603 \mathrm{~W}$ (fluid power)
Pump efficiency is 66%, so the shaft power required:
$5751.603 / 0.66=8714.55 \mathrm{~W}$ (shaft power)
So total efficiency is: $0.66 * 0.66=0.4356 \%$

(a) Find the mass flow rate

Find V (at propellor): V = vA Velocity at propellor $=(21+7) / 2=14 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& \mathrm{v}=14 / 3.6=3.8889 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~A}=\mathrm{pi} * 5^{\wedge} 2=78.5398 \mathrm{~m}^{2} \\
& \mathrm{~V}=\mathrm{vA}=3.8889 * 78.5398=305.4334 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Convert to $\mathrm{kg} / \mathrm{s}: \rho=1 / 0.85=1.1765 \mathrm{~kg} / \mathrm{m} 3$

$$
\mathrm{m}=\rho \mathrm{V}=305.4334 * 1.1765=359.34 \mathrm{~kg} / \mathrm{s}
$$

(b) Find the change in head across the turbine

$$
\begin{aligned}
& \mathrm{H}=\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}-\mathrm{v}_{1}^{2} / 2 \mathrm{~g}=\mathrm{h}_{\mathrm{v} 2}-\mathrm{h}_{\mathrm{v} 1} \\
& \mathrm{~h}_{\mathrm{v} 2}=(7 / 3.6)^{\wedge} 2 /(2 * 9.81)=0.1927 \mathrm{~m} \\
& \mathrm{~h}_{\mathrm{v} 1}=(21 / 3.6)^{\wedge} 2 /(2 * 9.81)=1.7343 \mathrm{~m} \\
& \mathrm{H}=\mathrm{h}_{\mathrm{v} 2}-\mathrm{h}_{\mathrm{v} 1}=0.1927-1.7343=-1.5416 \mathrm{~m}
\end{aligned}
$$

(c) Find power

$$
\begin{aligned}
& \mathrm{P}=\dot{\mathrm{m} g H} \\
& =359.34 * 9.81 *-1.5416=-5434.33 \mathrm{~W}(5.43 \mathrm{~kW})
\end{aligned}
$$

(c) Find electrical power
$5434.33 * 0.45=2445.4485 \mathrm{~W}(2.445 \mathrm{~kW})$

Q22: Fuel ($\mathrm{RD}=0.77$) is pumped at $14 \mathrm{~kg} / \mathrm{s}$ from an open tank at EL1 $=2.6 \mathrm{~m}$ to closed tank at EL2 $=6.2 \mathrm{~m}$ with vapour pressure 104 kPa . Calculate power required (ignoring losses)

$$
\frac{\mathrm{p}_{1}}{p \mathrm{~g}}+\frac{v^{\prime}}{2 \mathrm{~g}}+\frac{\downarrow}{\mathrm{h}_{1}+\mathrm{H}}+\frac{\stackrel{\jmath}{\mathrm{p}_{2}}}{\rho \mathrm{~g}}+\frac{v^{\prime}}{2 \mathrm{~g}}+\mathrm{h}_{2}+\mathrm{H}_{\mathrm{L}}
$$

$$
\begin{aligned}
\mathrm{h}_{\mathrm{p} 2} & =104000 /(0.77 * 1000 * 9.81)=13.7681 \mathrm{~m} \\
\mathrm{H} & =\mathrm{p}_{2} / \mathrm{\rho g}+\mathrm{h}_{2}-\mathrm{h}_{1} \\
& =13.7681+6.2-2.6=17.3681 \mathrm{~m} \\
\mathrm{P} & =\dot{\mathrm{m}} \mathrm{gH} \\
& =14 * 9.81 * 17.3681 \\
& =2385.335 \mathrm{~W}
\end{aligned}
$$

Pumping System 2

Tuesday, 20 August 2013
6:14 PM

Q26: Flowrate=34L/s, PG1=20kPa, PG2 $=81 \mathrm{kPa}, \mathrm{D} 1=100 \mathrm{~mm}, \mathrm{D} 2=71 \mathrm{~mm}$, $E L 1=3.6 m, E L 2=10.4 m$. (a) Find pump power

Use continuity to get velocities at 1 and $2 \ldots \quad \dot{\mathrm{~V}}=v \mathrm{~A}$

Then...

$$
\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}+\frac{v_{1}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{1} \pm \mathrm{H}=\frac{\mathrm{p}_{2}}{\rho \mathrm{~g}}+\frac{v_{2}^{2}}{2 \mathrm{~g}}+\mathrm{h}_{2}+\mathrm{H}_{\mathrm{L}}
$$

Then ...

$$
\mathrm{P}=\dot{\mathrm{m}} g \mathrm{H}
$$

