Date: 26/7/21 19:09 PM

This is an unlicensed version of SpanMan. Please purchase a subscription to print a valid computation.

Single Span $150 \times 50 \times 2.5$ RHS Steel RHS C350LO to AS/NZS 1163
Provide 10 mm stiffeneres to steel beams at points of concentrated load and supports
Computations, and certificates produced by SpanMan must be submitted to a building surveyor/certifier for approval of the member sizes prior to installation. Installation can only occur when a Building Permit has been granted.

Design Parameters
 Country: Australia

Building type: House - domestic dwelling
Design working life: 50 years
Building Type Importance: 2 - Normal structures and structures not falling into other levels

Roof Use: Normal roof

Roof live load: 0.25 kPa , Roof live load 1.1 kN
Floor Use: General eg living rooms, bedrooms, corridors, kitchen, toilets, study, rumpus
Floor live load: 1.5 kPa , Floor live load: 1.8 kN
Span $=3,000 \mathrm{~mm}$
A $=3,600 \mathrm{~mm}$ (roof span left)
B $=450 \mathrm{~mm}$ (roof span right)
$\mathrm{H} 1=0 \mathrm{~mm}$ (lower wall height)
$\mathrm{H} 2=2,700 \mathrm{~mm}$ (upper wall height)
$\mathrm{E}=3,600 \mathrm{~mm}$ (floor span)
$\mathrm{F}=0 \mathrm{~mm}$ (floor span right)
$\mathrm{S}=600 \mathrm{~mm}$ (stud spacing)
Roof weight $(0.80 \mathrm{~mm}$ steel sheet $)=10 \mathrm{~kg} / \mathrm{m}^{2}$

Roof ceiling(13 mm plaster, pink batt insulation, wiring + sisalation + fittings) $=18 \mathrm{~kg} / \mathrm{m}^{2}$
Roof self weight(trusses $/$ rafters) $=10.17 \mathrm{~kg} / \mathrm{m}^{2}$
H 1 weight(10 mm plasterboard one side, pink batt insulation, 15 mm avg. weatherboards, wiring + sisalation + fittings $)=25 \mathrm{~kg} / \mathrm{m}^{2}$
H 2 weight(10 mm plasterboard one side, pink batt insulation, 15 mm avg. weatherboards, wiring + sisalation + fittings $)=25 \mathrm{~kg} / \mathrm{m}^{2}$
Floor weight(19 mm particle board) $=13 \mathrm{~kg} / \mathrm{m}^{2}$
Floor ceiling(13 mm plaster, pink batt insulation, wiring + sisalation + fittings $)=18 \mathrm{~kg} / \mathrm{m}^{2} \Omega$
Floor self weight(joists) $=12.88 \mathrm{~kg} / \mathrm{m}^{2}$
The top of the Lintel is to be restrained by studs at 600 mm centres

Section Properties

Depth $=150 \mathrm{~mm}$
Width $=50 \mathrm{~mm}$
$\mathrm{E}=200,000 \mathrm{MPa}$
$\mathrm{A}=959 \mathrm{~mm}^{2}$
$\mathrm{I}_{\mathrm{xx}}=2.54 \mathrm{e} 6 \mathrm{~mm}^{4}$
$Z_{x x}=43,500 \mathrm{~mm}^{3}$

Dead Load

$w($ self weight $)=0.000959 \times 7.9 \times 9.81=0.0743 \mathrm{kN} / \mathrm{m}$
$w($ dead load $)=$ roof + walls + floor
$=((3.6 / 2+0.45 / 2) / \cos (25) \times(29.03+10.17)+(0 \times(25+25)+2.7 \times(25+25))+(3.6 / 2+0 / 2) \times(31+12.88)) \times 0.00981=2.959 \mathrm{kN} / \mathrm{m}$ $w($ total dead load $)=0.0743+2.959=3.033 \mathrm{kN} / \mathrm{m}$

Live Load

Imposed Loads
$Q($ UDL floor live load $)=$ Floor load width \times floor liveload $=(3.6 / 2+0 / 2) \times 1.5=2.7 \mathrm{kN} / \mathrm{m}$
$Q($ Roof point live load $)=1.1 \mathrm{kN}$
$Q($ Interior point live load) $=1.8 \mathrm{kN}$
$Q($ Maximum point live load $)=1.8 \mathrm{kN}$

Date: 26/7/21 19:09 PM
This is an unlicensed version of SpanMan
$Q($ Short-term $U D L)=$ Imposed UDL $\times \psi_{s}=2.7 \times 0.7=1.89 \mathrm{kN} / \mathrm{m}$
$Q($ Short-term point load $)=$ Imposed point load $\times \psi_{\mathrm{s}}=1.8 \times 1=1.8 \mathrm{kN}$
$Q($ Long-term UDL $)=$ Imposed UDL $\times \Psi_{1}=2.7 \times 0.4=1.08 \mathrm{kN} / \mathrm{m}$
$Q($ Long-term pointyoad $)=$ mposed point load $x \Psi_{l}=1.8 \times 0.4=0.72 \mathrm{kN}$

CALCULATIONS

Deflections, bending moments, shear forces and support reactions are calculated by the principles of structural analysis and match the output of any standard structural analysis software.

Where deflections, bending moments and shear forces are within 3% of allowable values they are marked in red.
(1) Deflection - Long-Term Dead Load (+ downward deflection, - upward deflection)
w_{1} (long-term dead load) $=3.033 \mathrm{kN} / \mathrm{m}$ $\mathrm{w}_{1}($ long-term live load $)=1.08 \mathrm{kN} / \mathrm{m}$

Deflection($1,500 \mathrm{~mm}$ from support) $=8.539 \mathrm{~mm}<=9.167$ (lesser $12 \mathrm{~mm} \&$ span $/ 360 \pm 10 \%$)
(2) Deflection - Short-Term Point Live Load
(+ downward deflection, - upward deflection)
$P_{1 \text { (live load) }}(1.5 \mathrm{~m}$ into span) $=1.8 \mathrm{kN}$
Deflection($1,500 \mathrm{~mm}$ from support) $=1.993 \mathrm{~mm}<=13.2$ (lesser 15 mm span $250 \pm 10 \%$)
(3) Deflection - Short-Term UDL Midspan
(+ downward deflection, - upward deflection)
$\mathrm{w}_{1}($ live load $)=1.89 \mathrm{kN} / \mathrm{m}$

Deflection(1,500 mm from support) $=3.924 \mathrm{~mm}<=13.2$ (lesser $15 \mathrm{~mm} \& \mathrm{span} / 250 \pm 10 \%$)
(4) Bending Strength $-1.35 x$ Dead Load Only
$\mathrm{w}_{1}($ dead load $)=1.35 \times 3.033=4.094 \mathrm{kN} / \mathrm{m}$

Span Strength

Moment(span) $=4.606 \mathrm{kNm}$
$\mathrm{I}_{\mathrm{e}}=600 \mathrm{~mm}$
$\alpha_{m}=1$
$M_{s}(5.2 .1)=f_{y} Z_{e}=350 \times 43,500 \times 1 \mathrm{e}-06=15.225 \mathrm{kNm}$
$M_{0 a}(5 \cdot 6.1 .1 .(3))=\left[\left(\pi^{2} E I_{y} / I_{e}^{2}\right)\left[G J+\left(\pi^{2} E I_{w} / l_{e}{ }^{2}\right)\right]\right]^{0.5}$
$=\left[\left(\pi^{2} \times 200,000 \times 452,000 / 600^{2}\right) \times\left[80,000 \times 1.28 \mathrm{e} 6+\left(\pi^{2} \times 200,000 \times 0 / 600^{2}\right)\right]\right]^{0.5} * 1 \mathrm{e}-06=503.8 \mathrm{kNm}$
$\alpha_{s}(5.6 .1 .1(2))=0.6\left[\left(\left(M_{s} / M_{0 a}\right)^{2}+3\right)^{0.5}-M_{s} / M_{0 a}\right]=0.6 \times\left[\left((15.23 / 503.8)^{2}+3\right)^{0.5}-15.23 / 503.8\right]=1.021$
$M_{b}\left(\right.$ AS4100 5.6.1.1(a)) $=\alpha_{m} \times \alpha_{s} \times M_{s}=1 \times 1.021 \times 15.23=15.55 \mathrm{kNm}$
$M_{\mathrm{s}}=15.23 \mathrm{kNm}$
$\Phi^{*} \mathrm{M}_{\mathrm{b}}=0.9 \times 15.23=13.7 \mathrm{kNm}>=4.606 \mathrm{kNm}$

Reactions (+downward, -upward)

Maximum limit state reaction at $x=6.142 \mathrm{kN}$
Maximum limit state reaction at $\mathrm{y}=6.142 \mathrm{kN}$

Date: 26/7/21 19:09 PM

Phone: 04476859
29 Wyoming Ave
VALLEY HEIGHTS, New South Wales, 2777 ,
Australia
(5) Bending Strength $-1.2 x$ Dead Load $+1.5 x$ Imposed Point Live Load Span

$P_{1 \text { live load) }}(1.5$ in into span) $=1.5 \times 1.8=2.7 \mathrm{kN}$
Span Strength
Moment(span) $=6.119 \mathrm{kN}$
$\mathrm{I}_{\mathrm{e}}=600 \mathrm{~mm}$
$\alpha_{m}=1$
$\mathrm{M}_{\mathrm{s}}(5.2 .1)=\mathrm{f}_{\mathrm{y}} \mathrm{Z}_{\mathrm{e}}=350 \times 43,500 \times 1 \mathrm{e}-06=15.225 \mathrm{kNm}$
$M_{0 a}(5.6 .1 .1 .(3))=\left[\left(\pi^{2} E I_{y} / I_{e}^{2}\right)\left[G J+\left(\pi^{2} E I_{w} / I_{e}\right)\right]^{0.5}\right.$

$$
=\left[\left(\pi^{2} \times 200,000 \times 452,000 \times 600^{2}\right) \times\left[80,000 \times 1.28 \mathrm{e} 6+\left(\pi^{2} \times 200,000 \times 0 / 600^{2}\right)\right]\right]^{0.5} * 1 \mathrm{e}-06=503.8 \mathrm{kNm}
$$

$\alpha_{s}(5.6 .1 .1(2))=0.6\left[\left(\left(M_{s} / M_{0 a}\right)^{2}+3\right)^{0.5}-M_{s} / M_{0 a}\right]=0.6 \times\left[\left((15.23 / 503.8)^{2}+3\right)^{0.5}-15.23 / 503.8\right]=1.021$
$M_{b}\left(\right.$ AS4100 5.6.1.1(a)) $=\alpha_{m} \times \alpha_{s} \times M_{s}=1 \times 1021 \times 15.23=15.55 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s}}=15.23 \mathrm{kNm}$
$\Phi^{*} \mathrm{M}_{\mathrm{b}}=0.9 \times 15.23=13.7 \mathrm{kNm}>=6.119 \mathrm{kNm}$
Reactions (+downward, -upward)
Maximum limit state reaction at $x=6.809 \mathrm{kN}$
Maximum limit state reaction at $y=6.809 \mathrm{kN}$
(6) Bending Strength $-1.2 x$ Dead Load $+1.5 x$ Imposed Live Load
$\mathrm{w}_{1}($ dead load $)=1.2 \times 3.033=3.64 \mathrm{kN} / \mathrm{m}$
$w_{1}($ live load $)=1.5 \times 2.7=4.05 \mathrm{kN} / \mathrm{m}$

Span Strength

Moment(span) $=8.651 \mathrm{kNm}$
$\mathrm{I}_{\mathrm{e}}=600 \mathrm{~mm}$
$\alpha_{m}=1$
$\mathrm{M}_{\mathrm{s}}(5.2 .1)=\mathrm{f}_{\mathrm{y}} \mathrm{Z}_{\mathrm{e}}=350 \times 43,500 \times 1 \mathrm{e}-06=15.225 \mathrm{kNm}$
$M_{0 a}(5.6 .1 .1 .(3))=\left[\left(\pi^{2} E I_{y} / I_{e}^{2}\right)\left[G J+\left(\pi^{2} E I_{w} / I_{e}^{2}\right)\right]\right]^{0.5}$
$=\left[\left(\pi^{2} \times 200,000 \times 452,000 / 600^{2}\right) \times\left[80,000 \times 1.28 \mathrm{e} 6+\left(\pi^{2} \times 200,000 \times 0 / 600^{2}\right)\right]\right]^{0.5} *(\mathrm{e}-06)=503.8 \mathrm{kNm}$
$\alpha_{s}(5.6 .1 .1(2))=0.6\left[\left(\left(M_{s} / M_{0 a}\right)^{2}+3\right)^{0.5}-M_{s} / M_{0 a}\right]=0.6 \times\left[\left((15.23 / 503.8)^{2}+3\right)^{0.5}-15.23 / 503.8\right]=1.021$
$M_{b}\left(\right.$ AS4100 5.6.1.1(a)) $=\alpha_{m} \times \alpha_{s} \times M_{s}=1 \times 1.021 \times 15.23=15.55 \mathrm{kNm}$
$M_{s}=15.23 \mathrm{kNm}$
$\Phi^{*} \mathrm{M}_{\mathrm{b}}=0.9 \times 15.23=13.7 \mathrm{kNm}>=8.651 \mathrm{kNm}$

Reactions (+downward, -upward)

Maximum limit state reaction at $x=11.53 \mathrm{kN}$
Maximum limit state reaction at $\mathrm{y}=11.53 \mathrm{kN}$

(7) Shear Strength - 1.35xDead Load Only
$\mathrm{w}_{1}($ dead load $)=1.35 \times 3.033=4.094 \mathrm{kN} / \mathrm{m}$
Shear(at 0.001 mm from x) $=6.142 \mathrm{kN}$
Shear(at 0.001 mm from y$)=-6.142 \mathrm{kN}$
Shear(maximum) $=6.142 \mathrm{kN}$
Shear(Design shear with AS 1684.1-1999(3.4.2.4) reduction) $=6.142-7 \times 0.57=2.152 \mathrm{kN}$

Date: 26/7/21 19:09 PM
This is an unlicensed version of SpanMan

Maximum limit state reaction at $x=6.142 \mathrm{kN}$
Maximum limit state reaction at $\mathrm{y}=6.142 \mathrm{kN}$
(8) Shear Strength $-1.2 x$ Dead Load $+1.5 x$ Imposed Shear Point Live Load 1.001 mm from X
$\mathrm{w}_{1}($ dead load $)=1.2 \times 3.033=3.64 \mathrm{kN} / \mathrm{m}$
$\mathrm{P}_{1 \text { (live load) }}(0.001 \mathrm{~m}$ into span) $=1.5 \times 1.8=2.7 \mathrm{kN}$
Shear(at 0.001 mm from x$)=8.158 \mathrm{kN}$
Shear(at 0.001 mm from y$)=-5.46 \mathrm{kN}$
Shear(maximum) $=8.158 \mathrm{kN}$
Shear(Design shear with AS 1684.1-1999(3.4.2.4) reduction) $=8.158-7 \times 0.8=2.558 \mathrm{kN}$
$V^{*}(5.11 .1)=\Phi V_{V}$
$\mathrm{V}_{\mathrm{v}}(5.11 .2)=\mathrm{V}_{\mathrm{u}}$
$\mathrm{d}_{\mathrm{p}} / \mathrm{t}_{\mathrm{w}}=150 / 2.5=60$

$82 /\left(\mathrm{f}_{\mathrm{y}} / 250\right)^{0.5}=82 /(350 / 250)^{0.5}=69.3$
$\mathrm{V}_{\mathrm{u}}(5.11 .2(\mathrm{a}))=\mathrm{V}_{\mathrm{w}}$
$\mathrm{V}_{\mathrm{w}}(5.11 .4)=0.6 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{w}}=0.6 \times 350 \times 725 \times 0.001=152.3 \mathrm{kN}$
$\mathrm{V}^{*}(5.11 .1)=0.9 \times 152.3=137 \mathrm{kN}>=2.558 \mathrm{kN}$

Reactions (+downward, -upward)

Maximum limit state reaction at $x=8.158 \mathrm{kN}$
Maximum limit state reaction at $\mathrm{y}=5.46 \mathrm{kN}$
(9) Shear Strength - 1.2xDead Load + 1.5xImposed Live Load UDL
$\mathrm{w}_{1}($ dead load $)=1.2 \times 3.033=3.64 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{1}($ live load $)=1.5 \times 2.7=4.05 \mathrm{kN} / \mathrm{m}$
Shear(at 0.001 mm from x$)=11.53 \mathrm{kN}$
Shear(at 0.001 mm from y$)=-11.53 \mathrm{kN}$

Shear(maximum $)=11.53 \mathrm{kN}$

Shear(Design shear with AS 1684.1-1999(3.4.2.4) reduction) $=11.53-7 \times 0.8=5.934 \mathrm{kN}$

```
\(V^{*}(5.11 .1)=\Phi V_{v}\)
\(V_{v}(5.11 .2)=V_{u}\)
\(\mathrm{d}_{\mathrm{p}} / \mathrm{t}_{\mathrm{w}}=150 / 2.5=60\)
\(82 /\left(\mathrm{f}_{\mathrm{y}} / 250\right)^{0.5}=82 /(350 / 250)^{0.5}=69.3\)
\(\mathrm{V}_{\mathrm{u}}(5.11 .2(\mathrm{a}))=\mathrm{V}_{\mathrm{w}}\)
\(\mathrm{V}_{\mathrm{w}}(5.11 .4)=0.6 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{w}}=0.6 \times 350 \times 725 \times 0.001=152.3 \mathrm{kN}\)
```

$\mathrm{V}^{*}(5.11 .1)=0.9 \times 152.3=137 \mathrm{kN}>=5.934 \mathrm{kN}$

